Ada on Single-Board Computers (SBCs)

Running Ada on hackable, open-source single-board computers for small form factor deployments.

Why SBCs for Ada?

Pros:

  • Low power consumption (5-25W vs 200W+ desktop)

  • Small form factor (fits anywhere)

  • Fanless/silent operation possible

  • Always-on server use case

  • Learning platform ($50-150 vs $500+)

  • ARM architecture exploration

Cons:

  • Limited RAM (usually 4-16GB max)

  • Slower inference than desktop GPUs

  • Only small models practical (1B-7B)

  • May need aggressive quantization (Q4)

  • Some require kernel patches for NPU support


Best SBCs for Ada (2025)

πŸ† Top Pick: Orange Pi 5 Plus (16GB)

Specs:

  • CPU: Rockchip RK3588 (4x A76 @ 2.4GHz + 4x A55 @ 1.8GHz)

  • NPU: 6 TOPS (Rockchip NPU, RKNN SDK)

  • RAM: 4GB/8GB/16GB/32GB LPDDR4X

  • Storage: eMMC + microSD + M.2 NVMe

  • Power: ~15W under load

  • Price: ~$80-150 (depending on RAM)

  • Open Source: Yes, good community support

Ada Performance:

  • 3B Q4 models: ~3-5 tokens/sec

  • 7B Q4 models: ~1-2 tokens/sec (usable!)

  • NPU acceleration: Experimental with RKNN

Setup:

# Install Armbian (recommended over stock OS)
# Flash to microSD: https://www.armbian.com/orange-pi-5-plus/

# SSH in, install Docker
curl -fsSL https://get.docker.com | sh

# Clone Ada
git clone https://github.com/luna-system/ada.git
cd ada
./setup.sh
./configure-gpu.sh cpu  # No GPU, but NPU support coming

# Use ARM64 Ollama
docker compose up -d

Why This One:

  • Best ARM SBC for LLMs in 2025

  • Up to 32GB RAM option (run 13B models!)

  • M.2 NVMe = fast storage

  • Active community, good Linux support

  • NPU support improving (RKNN 2.0)

Where to Buy:


πŸ₯ˆ Runner Up: Raspberry Pi 5 (8GB)

Specs:

  • CPU: Broadcom BCM2712 (4x A76 @ 2.4GHz)

  • GPU: VideoCore VII (no AI acceleration)

  • RAM: 4GB/8GB LPDDR4X

  • Storage: microSD + PCIe 2.0 (via HAT)

  • Power: ~10W under load

  • Price: ~$80 + HAT

  • Open Source: Partially (some blobs)

Ada Performance:

  • 1B Q4 models: ~5-8 tokens/sec

  • 3B Q4 models: ~2-3 tokens/sec

  • 7B Q4 models: ~0.5-1 token/sec (slow but works)

Setup:

# Use Raspberry Pi OS 64-bit (Bookworm)
# Or Ubuntu Server 24.04 ARM64

# Install Docker
curl -fsSL https://get.docker.com | sh

# Clone and run Ada
git clone https://github.com/luna-system/ada.git
cd ada
./setup.sh
./configure-gpu.sh cpu
docker compose up -d

# Patience: model pulling takes time on microSD!
# Highly recommend NVMe HAT for storage

With AI HAT (Optional):

  • AI HAT+: 13 TOPS NPU (Hailo-8L)

  • Price: +$70

  • Support: Experimental, limited Ollama support

  • Future: May enable faster inference

Why Consider:

  • Best documentation/community

  • Most accessories available

  • Official support

  • Easiest to get started

Limitations:

  • Only 8GB RAM max (limits model size)

  • microSD is slow (get NVMe HAT!)

  • AI HAT support still maturing

Where to Buy:


πŸ”§ Hacker’s Choice: Radxa Rock 5B

Specs:

  • CPU: Rockchip RK3588 (same as Orange Pi 5+)

  • NPU: 6 TOPS (RKNN)

  • RAM: 4GB/8GB/16GB/32GB LPDDR4X

  • Storage: eMMC + microSD + M.2 NVMe

  • Special: M.2 E-key for WiFi/PCIe devices

  • Power: ~18W under load

  • Price: ~$100-180

  • Open Source: Yes, very hacker-friendly

Ada Performance:

  • Similar to Orange Pi 5 Plus

  • 7B Q4: ~1-2 tokens/sec

  • 13B Q4: ~0.5-1 token/sec (with 16GB+ RAM)

Why This One:

  • Most hackable (expansion options)

  • PCIe lanes for add-ons

  • Could add external GPU (experimental!)

  • Best for tinkerers

Where to Buy:


πŸ’° Budget Option: Orange Pi 5 (8GB)

Specs:

  • CPU: Rockchip RK3588S (slightly slower than 5+)

  • NPU: 6 TOPS

  • RAM: 4GB/8GB/16GB LPDDR4X

  • Storage: microSD + M.2 NVMe

  • Power: ~12W under load

  • Price: ~$60-100

Ada Performance:

  • 3B Q4: ~2-4 tokens/sec

  • 7B Q4: ~1 token/sec

Why Consider:

  • Cheapest RK3588 board

  • Still has NPU

  • NVMe support

  • Good performance/price

Trade-offs:

  • No PCIe lanes

  • Fewer USB ports

  • Smaller community than Pi 5


Other Notable Options

Khadas VIM4 (16GB)

  • CPU: Amlogic A311D2

  • NPU: 3.2 TOPS

  • RAM: Up to 16GB

  • Price: ~$200

  • Note: Expensive, good build quality

Banana Pi M7

  • CPU: Rockchip RK3588

  • RAM: Up to 8GB

  • Price: ~$150

  • Note: Good alternative to Orange Pi

Pine64 RockPro64

  • CPU: Rockchip RK3399 (older)

  • RAM: 4GB

  • Price: ~$80

  • Note: Dated but still works for small models



Performance Comparison

Board

RAM

3B Q4

7B Q4

13B Q4

Power

Price

Orange Pi 5+ (16GB)

16GB

3-5 t/s

1-2 t/s

0.5-1 t/s

15W

$130

Rock 5B (16GB)

16GB

3-5 t/s

1-2 t/s

0.5-1 t/s

18W

$150

Orange Pi 5 (8GB)

8GB

2-4 t/s

1 t/s

N/A

12W

$80

Raspberry Pi 5 (8GB)

8GB

2-3 t/s

0.5-1 t/s

N/A

10W

$80

Pi 5 + AI HAT (8GB)

8GB

5-8 t/s*

1-2 t/s*

N/A

15W

$150

*With NPU acceleration (experimental)


Setup Tips

Storage Matters

# microSD is SLOW for models (500MB/s+)
# Always use NVMe if available

# Orange Pi 5/5+: Use M.2 NVMe
# Pi 5: Get NVMe HAT (Pimoroni, Geekworm)

# Check speeds:
dd if=/dev/zero of=test bs=1M count=1000

RAM Is King

  • 4GB: Only 1B models

  • 8GB: Up to 7B Q4 models

  • 16GB: Up to 13B Q4 models

  • 32GB: Up to 30B Q4 models (Orange Pi 5+ only!)

Cooling

# ARM chips throttle when hot
# Get a heatsink + fan for sustained loads

# Monitor temps:
watch -n1 'cat /sys/class/thermal/thermal_zone0/temp'

Use Swap (Carefully)

# If RAM constrained, enable swap on NVMe (NOT microSD!)
sudo dd if=/dev/zero of=/swapfile bs=1M count=8192
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile

# Add to /etc/fstab for persistence
echo '/swapfile none swap sw 0 0' | sudo tee -a /etc/fstab

Model Recommendations for SBCs

1B Models (Any 4GB+ SBC)

ollama pull qwen2.5:1b        # Best quality
ollama pull gemma:1b          # Fast
ollama pull tinyllama:1b      # Tiny but capable

7B Models (8GB+ required)

ollama pull llama3.2:7b       # Balanced
ollama pull mistral:7b        # Fast
ollama pull qwen2.5-coder:7b  # Coding

Use Q4 quantization for speed!


Power Consumption & Cost

Board

Idle

Load

24/7 Monthly*

Orange Pi 5+

3W

15W

~$4-5

Rock 5B

4W

18W

~$5-6

Orange Pi 5

2W

12W

~$3-4

Raspberry Pi 5

2W

10W

~$3

*At $0.12/kWh, assuming 8h load + 16h idle

Compare to desktop: RTX 4090 system = ~$25-35/month


NPU Acceleration Status

Rockchip RKNN (RK3588)

  • Status: Experimental support in 2025

  • Models: Limited to RKNN-converted models

  • Performance: 2-3x speedup when working

  • Setup: Requires RKNN toolkit, not plug-and-play

  • Future: Improving, but not stable yet

Hailo-8L (Pi AI HAT)

  • Status: Experimental

  • Support: Working on object detection, LLM support limited

  • Future: Community working on Ollama integration

Recommendation: Don’t buy for NPU yet, consider it a future bonus.


Real-World Use Cases

1. Personal Knowledge Assistant

Board: Orange Pi 5 (8GB)
Model: llama3.2:3b-q4
Use: Always-on, answers questions via MCP
Power: ~$3/month

2. Local Code Assistant

Board: Orange Pi 5+ (16GB)
Model: qwen2.5-coder:7b
Use: Code completion, debugging
Power: ~$4/month

3. Learning Platform

Board: Raspberry Pi 5 (4GB)
Model: tinyllama:1b
Use: Experiment, learn AI concepts
Power: ~$2/month

4. Home Automation Brain

Board: Rock 5B (8GB)
Model: phi4-mini:3.8b-q4
Use: Control smart home, voice assistant
Power: ~$4/month
+ Add microphone/speaker via USB

Troubleshooting

Model Won’t Load (OOM)

# Too big for RAM - try smaller/more quantized model
ollama pull llama3.2:3b-q4_0  # More aggressive quantization

# Or add swap (slow fallback)

Slow Inference

# Check CPU frequency (may be throttling)
cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq

# Check temperature
cat /sys/class/thermal/thermal_zone0/temp

# Ensure NVMe, not microSD
df -h

Docker Issues

# ARM64 architecture needs specific images
docker pull --platform linux/arm64 ollama/ollama

# Some images don't have ARM builds
# Check Docker Hub for arm64 tags

Future: Add-On Options

USB Accelerators (Experimental)

  • Google Coral TPU: $60, requires TensorFlow

  • Intel Neural Compute Stick: Discontinued

  • Hailo USB: Not yet available

PCIe GPUs (Rock 5B only)

  • PCIe 3.0 x4 lane via M.2 M-key

  • Could theoretically add low-profile GPU

  • Power delivery is the challenge

  • Community experimenting with eGPU setups


Community Projects

Open Source Ada SBC Builds

Share your build! Open an issue on GitHub with:

  • Board model & RAM

  • Storage type (microSD/NVMe)

  • Models you run

  • Performance (tokens/sec)

  • Power consumption

  • Photos of your setup

Tag: #ada-sbc


Buying Guide: What to Prioritize

  1. RAM First: 8GB minimum, 16GB ideal

  2. Storage: NVMe > eMMC > microSD

  3. Community: Larger community = better support

  4. Availability: Can you actually buy it?

  5. Cooling: Heat management matters

Don’t Buy For:

  • NPU (too experimental)

  • Latest CPU (last-gen is fine)

  • Fancy case (optional)

Do Buy:

  • Maximum RAM you can afford

  • NVMe storage

  • Active cooling solution


Conclusion

Best overall: Orange Pi 5 Plus (16GB) - $130

  • Runs 7B models well

  • M.2 NVMe included

  • Could handle 13B Q4

  • Best price/performance

Best starter: Raspberry Pi 5 (8GB) - $80

  • Easiest to get started

  • Best documentation

  • Good for learning

  • Solid 3B model performance

Most hackable: Radxa Rock 5B (16GB) - $150

  • Expansion options

  • Great community

  • PCIe experimentation


Ready to build? Check out Hardware & GPU Guide for full setup instructions!